Type: \(\displaystyle A^{2}_1\) (Dynkin type computed to be: \(\displaystyle A^{2}_1\))
Simple basis: 1 vectors: (1, 2, 2, 1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: B^{1}_2
simple basis centralizer: 2 vectors: (0, 0, 1, 0), (0, 0, 0, 1)
Number of k-submodules of g: 22
Module decomposition, fundamental coords over k: \(\displaystyle 3V_{2\omega_{1}}+8V_{\omega_{1}}+11V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, -2, -1)(0, 0, -2, -1)g_{-10}-2\varepsilon_{3}
Module 21(0, 0, -1, -1)(0, 0, -1, -1)g_{-7}-\varepsilon_{3}-\varepsilon_{4}
Module 31(0, 0, 0, -1)(0, 0, 0, -1)g_{-4}-2\varepsilon_{4}
Module 41(0, 0, -1, 0)(0, 0, -1, 0)g_{-3}-\varepsilon_{3}+\varepsilon_{4}
Module 52(-1, -1, -2, -1)(0, 1, 0, 0)g_{2}
g_{-13}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 61(0, 0, 1, 0)(0, 0, 1, 0)g_{3}\varepsilon_{3}-\varepsilon_{4}
Module 71(0, 0, 0, 1)(0, 0, 0, 1)g_{4}2\varepsilon_{4}
Module 82(0, -1, -2, -1)(1, 1, 0, 0)g_{5}
g_{-12}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 92(-1, -1, -1, -1)(0, 1, 1, 0)g_{6}
g_{-11}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 101(0, 0, 1, 1)(0, 0, 1, 1)g_{7}\varepsilon_{3}+\varepsilon_{4}
Module 112(0, -1, -1, -1)(1, 1, 1, 0)g_{8}
g_{-9}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
Module 122(-1, -1, -1, 0)(0, 1, 1, 1)g_{9}
g_{-8}
\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
Module 131(0, 0, 2, 1)(0, 0, 2, 1)g_{10}2\varepsilon_{3}
Module 142(0, -1, -1, 0)(1, 1, 1, 1)g_{11}
g_{-6}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
Module 152(-1, -1, 0, 0)(0, 1, 2, 1)g_{12}
g_{-5}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
Module 162(0, -1, 0, 0)(1, 1, 2, 1)g_{13}
g_{-2}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
Module 173(-2, -2, -2, -1)(0, 2, 2, 1)g_{14}
g_{-1}
g_{-16}
2\varepsilon_{2}
-\varepsilon_{1}+\varepsilon_{2}
-2\varepsilon_{1}
Module 183(-1, -2, -2, -1)(1, 2, 2, 1)g_{15}
h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-15}
\varepsilon_{1}+\varepsilon_{2}
0
-\varepsilon_{1}-\varepsilon_{2}
Module 193(0, -2, -2, -1)(2, 2, 2, 1)g_{16}
g_{1}
g_{-14}
2\varepsilon_{1}
\varepsilon_{1}-\varepsilon_{2}
-2\varepsilon_{2}
Module 201(0, 0, 0, 0)(0, 0, 0, 0)h_{1}0
Module 211(0, 0, 0, 0)(0, 0, 0, 0)h_{3}0
Module 221(0, 0, 0, 0)(0, 0, 0, 0)h_{4}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 3
Heirs rejected due to not being maximally dominant: 13
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 13
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by 0
Potential Dynkin type extensions: A^{2}_2, B^{2}_2, A^{2}_1+A^{1}_1, 2A^{2}_1,